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Received 4 February 1977, in final form 4 April 1977 

Abstract. The crossover behaviour between Gaussian and Heisenberg critical behaviour is 
studied in an isotropic n vector model, in which the effect of a lattice cutoff, a =.I-', is 
imitated by means of ( V 2 ~ ) 2  and @V2&)2 terms in the effective Hamiltonian. A field 
theoretic method is used to construct, to first order in B = 4 - d,  a crossover scaling function 
for the susceptibility containing the corrections to scaling which involve A directly. The 
leading corrections vanish, near the Heisenberg fixed point, as [(T- TC)"/.Il2 where v is 
the corresponding correlation length exponent, and near the Gaussian fixed point as 
[ ( T -  Tc)1'2/A]2. 

1. Introduction 

In earlier work (Lawrie 1976, to be referred to as I) we used renormalised perturbation 
theory to study the crossover between the Gaussian and Heisenberg critical behaviour 
in an isotropic n vector model described by the Landau-Wilson effective Hamiltonian 
density, 

Here 4 0 ( x )  is an n component spin field, and & ( x )  is an abbreviation for the expression 
2:= &(x)~$&).  We are interested in calculating scaling forms for the thermodynamic 
functions near a critical point, and we assume, using magnetic terminology, that in this 
region mi is linear in temperature, while go is temperature independent. The sub- 
scripts in (1 .l) serve to distinguish the quantities appearing there from renormalised 
quantities which appear later. The critical temperature depends'on the value of go, and 
we denote by m;,(go) the critical value of m i .  It is convenient to define a parameter, 

(1.2) 
2 2  

7 = mo- modgo) 
which is proportional to the reduced temperature ( T -  Tc(go))/Tc(go). 

In this paper, we report a similar calculation using the Hamiltonian 

where ( z )  is the binomial coefficient and A is a parameter with the dimensions of inverse 
length, or equivalently of mass. We shall consider explicitly only the cases k = 1 and 
k = 2. The case k = 1 has already been studied by Bruce and Wallace (1976), and our 
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1558 I D Lawrie 

reasons for wishing to examine it further will be explained shortly. Firstly, however, it 
will be useful to discuss the significance of the new parameter A. The unperturbed 
propagator in momentum space obtained from (1.3) is 

(1.4) 

This propagator appears in Feynman integrals, in which the range of integration is 
O s l q l s c o .  That is, the momentum cutoff in the original Hamiltonian has been 
removed. The effect of A, therefore, is to supress the contributions from regions of 
integration for which q 2  b A2. In many formulations of the renormalisation group, a 
vital role is played by the existence of a finite Brillouin zone which, if approximated by a 
spherical region, restricts momentum integrations to the range 0 S 141 S l / a ,  where a is 
a length of the order of the lattice constant. In applications to ordinary condensed 
matter, of course, such a cutoff is always present in the original physics. Evidently, this 
restriction can be reasonably approximated by using a propagator of the form (1.4) and 
retaining the infinite range of integration. Such a procedure has indeed been used 
before, but it should be noted that (1.4) does not really have the form necessary to 
represent a discrete lattice structure. A better form would be 

or, for small q 2 ,  

where 8 is the unit step function. Near the boundary of the Brillouin zone, the q4 term 
in the denominator of (1.6) has the opposite sign from that in (1.4). This makes the 
physical interpretation of A as an inverse lattice spacing somewhat doubtful. One 
might, however approximate the step function by 

where A is a large constant. Expanding the denominator of (1.7) in powers of q2 ,  we 
have 

1 
1 +q2a2A ePA'  

e(i-q2a2)== 

This expression adds a q4 term with the same sign as that appearing in (1.4) to the 
denominator of the propagator. We may therefore accept A as giving a measure of the 
size of the Brillouin zone, even though one must not expect our results to represent with 
any great accuracy the effect of a real lattice structure. By allowing for different values 
of k ,  we test, to some extent, the model dependence of this cutoff mechanism. 

An alternative physical interpretation of our results can be obtained by adding to the 
nearest-neighbour interaction represented by the reciprocal of (1.5) a long-range 
interaction of the form 
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which gives rise to a propagator of the form 

(1.10) 

in the limit a -+ 0 we obtain from this expression the form (1.4) with k = 1. Furthermore, 
the limit A + 0 may describe the approach to a multi-critical point of the Lifshitz type, 
associated with the onset of helical ordering (see, e.g., Hornreich eta1 1975). We defer 
discussion of this possibility to future work. 

With either interpretation of the physical significance of A, it is of interest to enquire 
how a finite value of this parameter affects the scaling functions. In particular, one can 
estimate the size of the region in which the universal scaling behaviour should be 
observed. Thus our first aim is to calculate crossover scaling functions which depend 
explicitly on A .  Since A is an inverse length, one expects corrections to the universal 
scaling forms to vanish near the critical temperature, T = O ,  as T “ / A ,  where v is the 
correlation length exponent. This expectation will be confirmed. As the precise 
physical interpretation of A is obscure, we do not expect our results to have any great 
quantitative significance, and we confine our explicit calculation to an evaluation of the 
susceptibility to order E .  (The dimensionality of space is, as usual, denoted by d = 4 - E . )  
The result of this calculation is summarised and discussed in § 4. 

Our second object in this paper is more technical. The analysis presented in I 
enabled us to calculate crossover scaling functions which were correct to order E *  for all 
finite values of the parameters go and T in (1.1) and (1.2). However, because the 
analysis was performed with an infinite cutoff, or infinite Brillouin zone, these scaling 
functions did not have the correct analytic structure near the Heisenberg fixed point. 
Explicitly, simple dimensional analysis shows that the initial susceptibility, for 
example, can have only the form, 

X = T - 1 x G ( g o T - ‘ / 2 )  (1.11) 

when calculated with the Hamiltonian (1.1). Scaling theories, and renormalisation 
group analysis with a finite Brillouin zone show, however, that the form (1.11) is correct 
only near the Gaussian fixed point. When the original momentum cutoff, a - ’ ,  is finite, it 
is well known that there exists a value, g$ of go such that, when go is close to g $ ,  x has the 
form 

X = T-’XH((go- g$)T-”) (1.12) 

where y is the usual critical exponent, and &=-wv is the crossover exponent 
associated with go. In § 2, we summarise the analysis of I, and it will be seen (equations 
(2.13) and (2.28)) that the exponents y and OY appear in the renormalised theory. Thus 
XG(z )  has the form, for large z ,  

Y(Z - 2 w u / f  1 (1.13) 

where Y is analytic for small values of its argument. The next-to-leading terms in 7 
therefore appear correctly as powers of F, but the form (1.12) is not reproduced. The 
reason for this is that go* is proportional to a-., and by working without a momentum 
cutoff, one is prevented from actually reaching the Heisenberg fixed point. Accordingly, 
we shall demonstrate in 0 3 that by working with the Hamiltonian (1.3), with effective 
cutoff, A, instead of (1. l), the correct scaling form (1.12) can be obtained. 

This discussion is somewhat superfluous for the case of the Gaussian-Heisenberg 
crossover, in view of the fact that Bruce and Wallace (1976) have obtained, to order E ~ ,  

X & ) =  Z 2 ( Y - l ) / r  
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a scaling function with the correct analytic properties near both fixed points. We 
believe, however, that the methods of renormalised perturbation theory provide a 
valuable tool for the study of crossover problems in general. Thus one can obtain 
renormalisation group equations, such as (3 -32)-(3.34), which represent an exact 
solution of the field theoretic model defined by the Hamiltonian (1.3), whereas the 
analogous relations obtained by other methods, such as that used by Bruce and Wallace, 
normally involve neglecting certain non-leading terms, including the corrections we 
wish to calculate. Furthermore, our equations can in principle be integrated order by 
order in E ,  yielding scaling functions directly from the original theory. We thus avoid 
the procedure of matching two different approximations, one valid inside the critical 
region, and one outside, which appears to be an essential ingredient of the methods 
developed, for example, by Rudnick and Nelson (1976) and by Nelson and Domany 
(1976). It is therefore reassuring to find that the apparent limitation we have discussed 
can be overcome. Indeed, as we shall show in 0 3, all that is necessary to obtain the 
correct scaling form (1.12) is to re-define the variable t in ( l , l l ) ,  in terms of 
appropriate non-linear scaling fields of the Gaussian fixed point. When this is done, 
(1.13) reproduces an expression of the correct form, (1.12), in the appropriate limit. To 
obtain numerical results, one may set E = 1, and scale the temperature so that t = T-''*. 
In this case, the results of I are affected only by a change of scale factor. These results 
are explained in a self-contained form in 0 4. 

2. Summary of renormalisation group structure in the non-cutoff theory 

In the field theory defined by ( l . l ) ,  the ostensible purpose of a renormalisation 
prescription is to obtain a renormalised field, 

c $ " ( x ) = z ; 1 ' 2 c $ ; ( x ) ,  (2.1) 

such that the correlation functions, ( C $ ~ ~ ( X ~ ) .  , . c$".(x,)) are free from ultraviolet 
divergences for d S 4, provided that they are expressed in terms of a renormalised mass 
and a renormalised coupling constant. 

There exists a particularly useful class of renormalisation prescriptions in which, of 
the renormalised quantities, only the mass depends on the temperature variable, mi, To 
obtain such a prescription, it is convenient to introduce an arbitrary parameter, p, with 
the dimensions of mass, and to define the renormalised parameters U and t via 

go = p'UZ1Z;*, 

7 = z m p  t, 2 

where T is the variable defined by (1.2). The renormalisation constants, Z1, 2, and Z,, 
appearing in (2.1)-(2.3) are defined by evaluating certain selected correlation functions 
in momentum space, and specifying the values they assume at some given momentum 
points, which are in general functions of p. For the class of prescriptions in which we are 
interested, the Zi are functions of U alone. A particularly economical prescription 
belonging to this class, due to t'Hooft and Veltman (1972), was used in I. This 
prescription involves picking out poles as a function of dimensionality, d, which occur in 
the correlation functions at E = 0. As these poles do not appear in the cutoff theory, 
such a prescription will not carry over into the later parts of this work, and an alternative 
prescription will be necessary. The structure to be described in the remainder of this 
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section depends only on the features we have already mentioned, which are common to 
both prescriptions in the non-cutoff theory. 

The theory is most simply expressed in terms of the unrenormalised one-particle- 
irreducible correlation functions, rt', associated with the expectation values of pro- 
ducts of s unrenormalised fields, c$:, and their renormalised counterparts, These 
two sets of functions are related by 

Scaling behaviour is contained in the renormalisation group equation for the renormal- 
ised functions, namely 

This equation simply expresses the fact that the unrenormalised correlation functions 
are independent of the arbitrary parameter p. It is obtained by differentiating (2.4) with 
respect to p at fixed go and 7. Straightforward application of the chain rule shows that 
the coefficients are given by 

d d 
du  

In Z3 = @(U) - In Z3,  

(2.9) 
(2.10) 

It is well known that P ( u )  has, in perturbation theory, zeros at U = 0 and U = U*, where 
U *  is of order E ,  while @(U) and B ( u )  are negative for 0 < U < U*. The usual critical 
exponents are then given by 

v = v(u*)), 

77 = - Y d U * ) ,  

- Y =  42-77), 

(2.11) 

(2.12) 

(2.13) 

and corrections to scaling near the critical point are governed by the exponent 

0 = P'(U*). (2.14) 

The thermodynamic functions in which one is ultimately interested are most closely 
related to the unrenormalised correlation functions, rt'. To obtain scaling functions 
for these, two steps are necessary. Firstly, one may obtain a solution of (2.5) in the form 
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The effective mass and coupling constant, p and f i ,  in this expression are defined by 

v(u’ )  du‘ 
B(u’)  ’ In (y) = Ju 

or  equivalently, by the differential equations 

a i  
at  

t - = B ( J ) ,  

(2.16) 

(2.17) 

(2.18) 

(2.19) a 
at 

t - / i = v ( E ) j i ,  

with the initial conditions fi(1) = U and F(1) = p. In order to keep track of powers of E ,  it 
is convenient to define 

v = u / u * ,  (2.20) 

C ( t ) =  a ( t ) / u * .  (2.21) 

Equation (2.16) can then be written 

(2.22) 

We arrive at (2.22) by writing 

1 
(2.23) 

The function F ( u )  defined by (2.23) is regular at the end points, U = 0, and U = 1, and in 
the explicit calculation of I, F ( v )  was found to contribute to the final result only at order 

The second step is to express (2.15) and (2.22) in terms of unrenormalised 

3 E .  

quantities. To do this, we rewrite (2.6)-(2.8) in integral form, and obtain 

‘ -10 / 

1 2 3  = exP (il, dU’ B(u*U’)/u* 
y3 (U * U ’)v (U * U ‘) 

The exponential factor in (2.15) can be written 

) exp(  -;I” do’ B(u*U‘)/u* . 
t’ v(u*v’)y3(u*u’) 

(2.24) 

(2.25) 

(2.26) 

(2 .27 )  

The functionf(0) appearing in (2.24) and (2.25) is defined by writing for (@(u*u))-l an 
equation analogous to (2.23), and is exactly cancelled in the final result, (2.29). The 
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constant of integration, (u*/go), in (2.24) is obtained by noting that in perturbation 
theory, (2.2) gives 

@-'go= u*v + 0 ( v 2 ) .  (2.28) 

We now eliminate p, v and t between equations (2.3) and (2.22)-(2.24) to obtain 

In the same way, we may obtain ii as a function of T and 5, namely 

( v ( u  *V')  - t ) .  fi  = 7 1 ' 2  exp -- 
0 B ( u * v ' ) / u *  
' dv' 

Finally, from (2.4), (2.15), (2.25) and (2.26) we obtain 

(2.29) 

(2.30) 

(2.31) 

From (2.29) we obtain V as a function of the scaling variable 

(2.32) 

and (2.30) gives the scaling form of I'd"' as a function of T and z .  Each of the functions 
appearing on the right-hand side of (2.31) is to be calculated from renormalised 
perturbation theory. Provided that z is treated as being independent of E ,  this 
perturbation expansion is also an expansion in powers of E .  When z is large, (2.28) 
shows that 

(2.33) 

The next-to-leading terms in this limit thus have the correct behaviour as functions of T ,  

but they do not contain the expected factor ( g o -  go*). We shall see how to correct this 
defect in the next section. 

* " 2  = g o / u  7 , 

5 1 - Z - 2 W Y / E  -- 1 -go2wvI '  W Y  T .  

3. Introduction of a momentum cutoff 

We now wish to extend the analysis of the last section to cover the model Hamiltonian 
(1.3), with k f 0. As before, we define renormalised quantities, 4, U' and r,  via 

4; = z:/'+", (3.1) 

The reason for the tilde sign in (3.2) will become clear later. For d ~ 4 ,  the only 
ultraviolet divergences in the theory occur as poles at E = 0 in self-energy insertions, and 
these occur only for k = 1. Our renormalisation prescription in this case will be 
designed to ensure that the renormalised correlation functions remain finite in the limit 
A + CD. It is no longer possible to give a prescription such that the Z, depend on U' alone, 
but one can ensure that they are independent of t .  We do this by specifying the values of 
certain correlation functions at t = 0. The critical mass, m&(go, A) is defined by 

rb2)(p2 = 0; go, = 0, A ) =  0. (3.4) 
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Once again, the one-particle-irreducible correlation functions satisfy 

(3.5) rg) = z ; s / Z r ( s )  

and so (3.4) is equivalent to the statement 

T( ' ) (p2  = 0; U', t = 0, A, p )  = 0. (3.6) 

The remaining conditions necessary to define the Zi cannot be imposed at zero 
momentum, owing to infrared divergences caused by the choice t = 0. They must be 
imposed with momenta fixed at some finite, non-exceptional values. That is to say the 
momentum arguments, pi, must be such that no non-trivial partial sum of them vanishes. 
A convenient set of conditions is 

These two conditions serve to define Z1 and Z3,  and are sufficient to renormalise the 
massless theory. The renormalisation constant, Z,,,, is defined by 

(3.9) 2 2 2 2  
= p 2  = = CL ; U', 0, A, C L )  = z,z,, 

where the correlation function rz! is the two-point function r(2) with an insertion of the 
operator q5* carrying momentum q. The conditions (3.6)-(3.9) are sufficient to define 
renormalised correlation functions r(')(pi; U', t, A, p )  which are finite in the limit A + 00. 

In fact, in this limit they reduce to a scheme described by Zinn-Justin (1973), apart from 
an unimportant change in the renormalisation point. 

To one-loop order in perturbation theory, the explicit expressions we obtain for the 
renormalisation constants are 

(3.10) 

Z 3 =  1, (3.11) 

(3.12) 

In these equations, B(a ,  p )  is the Euler beta function, and for k = 1 and k = 2 we find 

rl(e)= ef dx {2 [41-  X)e'+x]-'/*-[x(i +e'+ 11-€/21 (3.13) 

1 r2(e)= r l ( e ) + p '  dx { 2 ~ [ x ( i - ~ ) e * + x ] - ~ ~ + f ' )  lo1 
-2x[x(1 -x)e2+il-( '+! ')-(i+t€)x(i  -x)[x(i  - x ) e 2 +  1 1 - ( ~ + ~ ~ ) ) ,  

(3.14) 
The geometrical factor, s d  = 2.rrd'/'/[(2.rr)"r(d/2)] in (3.10) and (3.12) arises, as usual, 
from angular integrations. Observe that each of the expressions (3.10)-(3.12) falls 
naturally into two parts. The first is independent of ( p / A )  and equal to the result 
obtained from the non-cutoff theory while the second vanishes, for E > 0, in the limit 
( p / A ) +  0. We show in appendix 1 that this property holds for all orders of perturbation 
theory and forall positive values of k. For finite A, on the other hand, there are no poles 
in the limit E +- 0. 
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The necessary generalisation of the renormalisation group equation, (2.5),  is 
obtained, as before, by differentiating (3 .5)  with respect to p,  at fixed go, 7 and A ,  
However, since the Z, now depend on (p /A)  as well as on U', the coefficients must be 
found by solving the simultaneous equations which result from applying the operator 

to (3.2) and (3.3). The definitions 

i a  

Ft aP go7 2 
% ( U ' ,  c L / . i ) =  -- - ( P 2 t ) /  , 

are implicit in (3.15) and we also define 

a 
+ 3 ( ~ ,  p/id) = p - In 2 3  I , 

acL gomll 

; ( U ' ,  p/'i)= (2+Ym(U', p / A ) ) - I ,  

$(:, @/.I)= ; (U' ,  p/.\)B(U', @/A).  

The renormalisation group equation is then 

and the coefficients are given explicitly by 

1 n + 8  n + 2  
2 B(G, p / A ) =  - - € U ' +  ( l -&)B(l+&, 1-&) 

X [ B ( l - i € ,  1 -:E)-((CL/A)'K~(~/A)]S,U'~+O(U'~), 

;(:, &/A) = -+ ; - ( 1  - i E ) B ( l c i € ,  1 - 4 4  

(3.15) 

(3.16) 

(3 .17)  

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3 .22)  

(3.23) 

(3.24) 

(3.25) 

Now, to all orders in perturbation theory, the function consists of two parts, the first 
of which is equal to the coefficient obtained from the non-cutoff or A = CO theory. This 
follows from the form of the Zi noted above. Since the leading term is completely 
independent of ( p / A ) ,  it is possible and convenient to make a change of variable by 
writing 

U ' =  U + a 2 ( p / A ) u 2 + O ( u 3 ) ,  (3.26) 

U = U' - a2(p/A)U'*+ O(C3),  
or 

(3 .27 )  
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where the coefficients as(p/A) are chosen such that 

(3.28) 

The renormalisation group equation (3.21) then becomes 

( t ; - u ( u ,  p/A)p- -B(u ) -+ -  U ( U ,  p / A ) y 3 ( u ,  K I A )  T(”(pz; U ,  t, A, p)=O (3.29) 

where 

) a a s  
aCL au 2 

V ( U ,  pIII)= ;(& P I A ) ,  (3.30) 

Y3(% CLIh) = G(J,  PIA),  (3.31) 

and r(’’(pl; U ,  t, A, p )  means T”’ [p l ;  J ( u ,  PIA), r, A, p ] ,  the latter function being that 
which appears in (3.21). The solution of (3.29) is 

r” ’ (p i ;  U, t, P, A> 

= r(s)(pc; U ( r ) ,  1, @ ( t ) ,  A) 

(3.32) 

with the auxiliary functions U ( t )  and @ ( r )  defined by the simultaneous differential 
equations 

a l i  
d r  

a@ 

t - = B(f i ) ,  l i ( l )=  U, (3.33) 

(3.34) t - = @(a, @/>‘I), P ( 1 )  = CL. at 

Although this solution looks like a natural generalisation of (2.15), i t  is considerably 
more difficult to obtain. In fact, (3.29) is actually a special case of the equation studied 
by Schatter and Suzuki (1975), who do not, however, supply a proof of their solution. 
We sketch a proof of our case in appendix 2. 

Up to this point, we have followed closely the development of 0 2. The next step is 
to convert the results (3.32)-(3.34) into expressions involving the unrenormalised 
parameters, go and 7, instead of U, t and p. However, in order to obtain expressions with 
the correct analytic structure, we must follow a somewhat different procedure. In the 
non-cutoff theory of § 2, the renormalisation constants, Z,, were calculated from 
perturbation theory as power series in U ,  in which the coefficient of u s  was of order E - ’ .  

For this reason, one could not use equations (2.1)-(2.3) directly to recover the 
unrenormalised theory. Even though U is taken to be of order E ,  each term of the E 
expansion would collect contributions from all orders in perturbation theory. It was 
therefore necessary to obtain the integral forms (2.23)-(2.25) which resulted in the 
unsatisfactory expression (2.28). By contrast, the Zi in (3.10)-(3.12) contain no poles, 
provided that (PIA) is finite, and by taking U to be of order E ,  we can solve (3.1)-(3.3) 
directly, order by order in E .  In particular, we can now find a finite value, g: of go such 
that U has its fixed point value, U*. For this particular value of go, equation (3.29) 
predicts, as expected, a pure power law behaviour for the thermodynamic functions, as 
functions of temperature. 
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We define, once again, 

U = u / u * ,  (3.35) 

6 = q u * .  (3.36) 

Using equation (3.28) we obtain a differential equation for a 2 ( p / A )  whose solution is 

The constant of integration, Zk(m), is chosen so that a2(p /A)  is regular at E = 0. It is 
difficult to eliminate explicitly the arbitrary parameter p, and instead, we assign it a 
definite value, 

p = A .  (3.38) 

We use the last two equations, together with (3.2), (3.10), (3.11) and (3.26) to obtain 

go = A ' U * U  + 0 ( E 3 ) .  (3.39) 

Thus, to order E ,  we have 

(3.40) 

and 
U = golgox. (3.41) 

The differential equation (3.33) is identical to (2.18) and has the solution 
[ - e l 2  - - u - l ( l  - u)'/2""6(1 - 6 ) - r / 2 w v  (3.42) 

to this order. The exponent wv has, to order E ,  the value €12, but we refrain from 
evaluating it, in order to make the analytic structure clear. Using 

(3.43) 

(3.44) 

2 2  2 ~ = m o - m ~ ~ ( g o , A ) = p  tz,, 
and equations (3.38)-(3.41), we replace (2.28) by 

7-si2 = (g: /go)[  1 - (g~/go*)]"2""('~2zm)-"2v(l - 6)-6'2w"* 

The function F(u)does not contribute to order E ,  and has been omitted from (3.44). The 
definition (2.31) should now be replaced by 

(3.45) 4 2  - 4 2  
z = (go/go*)[l  - ( g o / g o * ) 1 - " 2 " " ( ~ 2 2 ~ )  T . 

We now obtain 6 as the same function of 2 as that obtained in § 2. Near the Gaussian 
fixed point, when go is small, we have again, 

2 = go / (u*7c '2 ) .  (3.46) 

However, near the Heisenberg fixed point, when go -- g:, we obtain the correct form, 

cc [ I  - (go/go*)]rwy.  (3.47) 

To obtain the universal parts of the scaling functions, that is, the parts which remain 
when (./A) is sufficiently small, and which should not depend explicitly on A, we 
observe that for small 7, (3.34) implies 

F a r " ,  (3.48) 



1568 I D Lawrie 

where 
v = V ( U * ,  O), (3.49) 

is the usual correlation length exponent. In this region, therefore, it issufficient to write 

(3.50) 

in place of (3.34). This equation is identical to (2.19), and therefore the only alteration 
which should be made to the results of 0 2 is to replace (2.31) by (3.45). 

Lastly, since we wish to obtain the full scaling function for the susceptibility, we need 
the complete solution of (3.34). We can integrate (3.34) order by order in E ,  and we 
obtain, to order E ,  the transcendental equation, 

afi - - 
at 

t - = / L V ( U ,  O), 

- ( n + 2 ) / 2 ( n + 8 )  (1 - f i ) ( n + 2 ) / 2 ( n + 8 )  /.i = T1/22;1/2[ 1 - ( g o / g t ) ]  

(3.51) 

In order to display the analytic structure of our solutions, we define the non-linear 
scaling field, TG,  associated with the Gaussian fixed point, by 

(3.52) 

where 2, is given by (3.12) with @/A = 1. As given by (3.50), /.i/A is now a function 
only of ( T G / A )  and z ,  since 5 is the solution of (3.44). The argument of the exponential 
in (3.50) is of order E .  We can therefore solve (3.50) order by order in E ,  to obtain 

- ( n  + 2 ) / ( n  + 8 )  
T G =  Tzi:[1 -(gO/go*)] 

(3.53) 

(3.54) 

Notice that, to order E ,  (3.54) can be written as 

e2  = (TG/A~2)(1  - g)(1-2u)/by (3.55) 

(p = - - 1  2~ + O ( E ~ )  is the crossover exponent. Near the Heisenberg fixed point, we see 
where v is the correlation length exponent for a Heisenberg-like critical point, and 

from (3.44) that 

(1 - f i ) K  TPdu, (3.56) 

and so 

eaT". (3.57) 

The corrections to scaling which involve A therefore vanish in this region, in the 
expected manner. 

4. Crossover scaling function for the susceptibility 

The initial susceptibility is given by the two-point correlation function as 

(4.1) = -(r(2)(p2 = o))-l, 
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Using the results of the last section, we can write two expressions for x, namely 

x = ?E'x(j(gG?Ge'/2, ?G/A2) (4.2) 

X = ?GvX&H?;*u, 7g/A2).  (4.3) 
and 

These expressions are appropriate near the Gaussian and Heisenberg fixed points 
respectively, and the scaling functions, XC and XH, are analytic for small values of their 
arguments. The quantities 76, gG, ?H and gH are non-linear scaling fields, whose precise 
definitions will be given shortly. The exponents y and Y are the usual susceptibility and 
correlation length exponents associated with the critical behaviour of a Heisenberg 
system, given to order E by 

n + 2  
2(n + 8) y = 2 v = l + -  e + 0(e2), 

while 
q5"= -$te+O(e2) 

(4.4) 

(4.5) 
is the Heisenberg crossover exponent. 

In the critical region, where corrections to scaling involving A are negligible, the 
scaling functions depend only on the scaling variable, z ,  which is defined in terms of the 
original parameters, go, r and A, entering (1.1)-(1.4), by 

z = (A'go/go*)[l- (go/go)I * c / 2 * " ( T / z m ) - c / 2 *  (4.6) 
The fixed-point value, go*, of go is found to be 
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To this order, these solutions are both equivalent to the single expression 

B = z/(l + z )  (4.13) 

and we shall make use of this fact to facilitate numerical calculations. In general, 
however, it should be understood that (4.11) and (4.12) are solutions of (4.9) obtained 
in two distinct approximations. 

Our choice of non-linear scaling fields is governed so far by the condition (4.10), 
together with the natural requirement that To and TH should be proportional to T. These 
conditions do not, however, define them uniquely, and we consider next the corrections 
to scaling involving A. These occur in the combination 

e2 = (TG/~2) (1  - q(1-2u)/du. (4.14) 

In writing (4.14) we have made the specific choice 
* (Zu-l) /d,  

TO= (T/zm)[l-(gO/gO)l 9 

which also implies 
* ' V / d Y  

Using (4.1 l), we can write (4.14) in the form 
gG = (A'gO/go*)[l -(gO/gO)] - 

(4.15) 

(4.16) 

9 (4.17) -J2  2(1-2u)/a e2 = (TG/A2)(1 + gG7G ) 

which is appropriate near the Gaussian fixed point. When T is small, d 2  varies as T ~ " ,  

and by an appropriate choice of scaling fields, we can ensure that, near the Heisenberg 
fixed point, O2 has the correct scaling form 

e2 = ( & / ~ ~ ) ( 1 +  gH+)(2u-1)/dU. (4.18) 
The appropriate definitions are 

9 (4.19) * ( 1 - 2 u ) / e u  
TH= (T/zm)(AcgO/gO) 

and 

gH = [I - ~ ~ o / ~ ~ ~ l ~ ~ ' ~ ~ / ~ ~ ~ " ~ ~ ' ~ .  (4.20) 

With these definitions, we see that near the Gaussian and Heisenberg fixed points 
respectively, 8 is given approximately by 

e = & I 2 f ~ ,  Gaussian, (4.21) 
or 

e = T; /  A, Heisenberg. (4.22) 
Thus the corrections to scaling associated directly with A vanish in the expected 
manner. 

The susceptibility is obtained by explicit evaluation of (3.22) which, to order E, gives 
simply 

x = f i - 2 .  (4.23) 
Our result, in parametric form, is 

(4.24) 
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where the function I k ( 8 )  is defined, for k = 1 and k = 2, by (3.13) and (3.14). The 
scaling functions in (4.2) and (4.3) are obtained explicitly by substituting in (4.24) the 
appropriate approximate solutions for D and 8. In particular, it is instructive to calculate 
the leading terms in XH, which are 

5 n + 2  3 n + 2  
20 n + 8  

x2-- - €xy-- -cy + * .  . . Ey-3- 
n + 2  5 n + 2  n + 2  
n + 8  1 2 n + 8  (n+8)2 12 n + 8  x H ( x ,  y)' 1 +-x +- - 

(4.25) 

Our results may be conveniently displayed in graphical form by calculating the 
effective exponent, 

In parametric form, we have 

where the function K k ( 8 )  is defined by 

(4.26) 

(4.27) 

(4.28) 

In order to express our results in terms of dimensionless quantities it is necessary to 
introduce a mass parameter, A,,, the reciprocal of which provides a basic unit of length. 
The 'dimensionless variables are 

A' = A/ Ao, (4.29) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

The dimensionless functions, B and 8 are, of course, independent of A. after the 
substitutions (4.29t(4.33). 

In figure 1, we show yeff as a function of rh, for various values of A', with gh = 0. We 
have set E = 1,  n = 3, and k = 1 in (4.27). For A' = 00, we see pure power law behaviour, 
with yeff = y. For finite values of A', however, the critical region, in which yeff = y, has a 
finite size which decreases as A' decreases, that is, as the A'-dependent corrections in 
(4.24) becomes more important. 

When go = 0, we find that yeff has its mean-field value, yeff = 1,  independent of r and 
A. Intermediate situations are shown in figures 2 and 3. Figure 2 shows yeff as a 
function of rL, with gh = 0.25 while in figure 3 we have set gb = 0.25, and plotted yeff as 
a function of the scaling field, rb. For A' = 00, we see a single profile, which moves along 
the temperature axis as go is varied. For finite values of A', however, the profile also 
changes shape as it moves. This change of shape is small near the Gaussian fixed point 
(figure 3), but becomes more pronounced as the Heisenberg fixed point is approached. 
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Figare 1. Plot of the effective exponent, yea. as a function of TL for various values of A', with 
gh = 0, z = 1 and n = 3. Full curves are for k = 1 and broken curves for k = 2. 

I I I I 

-2 0 2 c 6 
lg 7; 

Figure 2. Plot of yon as a function of & for gh = 0.25 for various values of A'. Full curves 
are for k = 1 and broken curves for k = 2. 

I I I 1 

Figure 3. Plot of YcHas a function of 7b for g& = 0.25 and k = 1, and for the indicated values 
of A'. 
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The broken curves in figures 1 and 2 are obtained by setting k = 2. They suggest that 
the form of the cutoff corrections is relatively insensitive to the details of the mechanism 
by which A is introduced, at least within the class of models considered. 

When y = 0, we obtain, to order e, the results given previously by Rudnick and 
Nelson (1976) and by Bruce and Wallace (1976). We may also note that there is, as is 
commonly expected, an eventual crossover to mean field behaviour at large values of T, 

for all values of go and A except go = gb and A = 00. However, this occurs in a region far 
from criticality, where many other irrelevant variables, which could be ignored in the 
critical region, should also be important. Such behaviour is a property of our simplified 
model Hamiltonian, rather than of any real physical system. 

Finally, we discuss one further feature of our calculation which may have some 
significance, The functions I ( @ )  and K ( 8 )  involve exponents which depend on e. As 
they appear in terms which are already of order e, it is formally correct, in an O(e) 
calculation, to set E = 0 in these exponents and we have done this in order to arrive at 
(4.24), and (4.27). An alternative procedure would have been to retain the full values of 
the exponents. In this case, one would have non-analytic corrections in (4.24), of the 
form, yl+'", etc. These exponents are indicative of a formal defect in our calculation. 
The operator @2q52) which we have used to imitate the effect of a lattice cutoff is not, in 
general, an eigen-operator of the renormalisation group near the Heisenberg fixed 
point. A fully complete calculation of the corrections involving this operator should 
thus take account of mixing with other irrelevant perturbations which also have 
canonical dimension six in four dimensions. Since these include, for example, the 
non-renormalisable operator +6,  it would not then be possible, using the direct methods 
of renormalised perturbation theory, to obtain a scaling function in closed form. We 
know of no calculations of this mixing, although the problem for operators of dimension 
four has been discussed by BrCzin et a1 (1974a, b). Indeed, it is not at all clear to what 
extent our results are misleading in this respect. It seems reasonable to assume that any 
new scaling exponent associated with the gradient interaction would be, like the 
exponent q, associated with the operator @q5)', at least of order e*; in that case our 
order e calculation would be unaffected. In any event, we are not concerned here with 
general treatment of such perturbations, but rather with estimating the effect of a lattice 
cutoff which, as discussed earlier, is, at best, only approximately represented by the 
Hamiltonian (1.3). For this problem it seems natural to expect a scaling function 
X&, y )  as defined in (4.3) which is analytic for small values of its arguments. Our 
results to O(E)  are quite consistent with this expectation, as explained. 

It is also possible that these exponents are indicative of the presence of another fixed 
point, namely, the isotropic Lifshitz point, associated with the limit A + 0. Unfortu- 
nately, the crossover dimension associated with this point is d = 8, and it is not possible 
to make any reliable statements about such behaviour on the basis of the present 
calculation. If the full exponents are retained, (4.27) reads 

n + 2  
2(n + 8 )  Yeff(B, e) = 1 + - ec(i - ecKk(e)), (4.29) 

where the e-dependent exponents in &(e) are now understood to have their full 
values. In figure 4, we illustrate the difference between (4.29)and (4.27) by plotting yeff 
as a function of TL with g h  = 0.25 and k = 1. The curves with Af = 10 and Af = 00 may be 
compared with those of figure 2. As one would expect, these two figures are in 
substantial agreement when & is not too large, and Af is not too small, i.e., for small 8. 
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Firprc 4. Plot of yea as a function of T;( for gL = 0-25, k = 1, and various values of A', 
retaining the full values of some ambiguous exponents discussed in the text. 

The dip in figure 4 is reminiscent of similar behaviour found, for example, in the cases of 
Heisenberg-dipolar crossover (Bruce et a1 1976) and of anisotropic Heisenberg systems 
(Nelson and Domany 1976, Bruce and Wallace 1976). However, it should probably not 
be taken too seriously. Indeed, one could regard the agreement of figures 2 and 4 as 
indicating the extent of the region over which the e expansion can be expected to give 
sensible results, at least in leading order. 
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Appendix 1 

We obtain here some properties of the Feynman integrals referred to in 6 3. To carry 
out the renormalisation, we need consider only the massless theory ( t  = 0). A general 
diagram with L loops and I internal lines then has the form 

G = fi I ddqi fi (kf)- '(~I-~kf+ l)-k, 
i = l  j = l  

where the kj are linear combinations of the loop momenta, qi, and the external 
momenta p8. Using the parametrisation due to Schwinger, we may rewrite (A.l) as 
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On making the transformation, aj + aj - A-’H1 &I, this becomes 

where D is the region Pil 
momenta can be performed explicitly to give an expression of the form 

0, B&ir c A2a,. The integrals over the and the loop 

In this equation, the external momenta have been evaluated at a renormalisation point 
with Ips 1 ot p, and the ai have been scaled by a factor of p-2. 

The overall factor of pdL-” is removed when calculating the dimensionless Zi, and 
the properties required in 8 3 are contained in the final product of (A.4). The first term 
in the expansion of this product is unity, and reproduces the value of the corresponding 
diagram in the non-cutoff theory. In the limit p / A  + 0, only this term survives, but for 
finite &/A, the remaining terms also contribute, and poles at E = 0 cancel, except in 
certain self-energy diagrams for k = 1. 

Appendix 2 

We wish to verify that the equation 

(A+ Y(u,  p)r = 0, 

where A is the differential operator 

a a a 
at au a In p 

A = t - - B ( u ) - - v ( u ,  p)-, 

has the solution 

where the auxiliary functions E and f i  are defined by 

(A.9) 

(A. 10) 

(A. 11) 
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Further application of (A.8) and (A.9) shows that 

Also, the chain rule gives 

(A.13) a a a 
a t  t -  v(ii(t), f i ( t ) ) =  (B(ii)-+u(ii,  aii fi);) a In p v(C, f i ) ,  

or, in integral form, 

(A. 14) 

Subtracting (A.14) from (A.12), we have 

which has the solution 

w, p, t > -  v@(t), f i ( t ) ) =  0. (A.16) 

This solution is unique if D(u, p, t)- .(E, f i )  and av(ii, fi)/a In f i  are differentiable to all 
orders, which we assume to be the case, at least for t > 0. 

The original equation (AS), therefore reduces to 

(A.17) 

Now we have 

= ?(U9 II). (A. 18) 

From this it follows that (A.7) is a solution of (A. 17) and therefore also of (AS). 
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